An Ultra-Sensitive Total Body PET Scanner for Biomedical Research

Simon Cherry, Joel Karp, Bill Moses, Jinyi Qi, Julien Bec, Eric Berg, Woon-Seng Choong, Jennifer Huber, Srilalan Krishnamoorthy, Qiyi Peng, Jonathan Poon, Suleman Surti, Xuezhu Zhang, Jian Zhou, Terry Jones, Ramsey Badawi
Acknowledgments

• Funding
 – NIH grant R01 CA170874 (Badawi)
 – UC Davis RISE award (Cherry)
 – NIH grant R01 EB016104 (Choong - OpenPET Electronics)
 – NIH grants R01 EB009056 (Surti) and R01 CA113941 (Karp)

• Medical Advisory Board:
 – Dave Mankoff, Richard Wahl, Michael Graham, Bill Jagust

• Senior Advisors:
 – Tom Budinger and Michael Phelps

• For useful discussions:
 – Roger Gunn, Jan Passchier, Illan Rabiner (Imanova, London)
 – Pat Price (Imperial College)
 – Yun Zhou (Johns Hopkins)
Sensitivity – Every Count Counts

- PET provides the most sensitive non-invasive molecular assay of the human body
- All PET studies are limited by statistics, radiation dose, or both

Current scanners do not maximize the sensitivity for whole-body imaging
Total-Body PET: Maximizing Sensitivity

- x40 gain NEC!
- Higher statistics
 - Support higher spatial resolution
- Lower radiation dose
 - Whole body scans at ~ 100 µSv
- Higher dynamic range
 - Late imaging, 5 more $T_{1/2}$
- Whole-body kinetics
 - Better temporal resolution
 - All tissues/organs simultaneously
Not a New Idea!

Terry Jones, circa 1990

Applications

• Systemic disease and therapies:
 – Cancer: Ultra-staging and micrometastasis
 – Inflammation
 – Infection
 – Cellular therapy and trafficking
 – Mind-body interactions

• Total body pharmacokinetics
 – Drug development
 – Toxicology
 – Biomarker discovery

• Low Dose may enable:
 – Expanded use in pediatrics
 – Use in chronic disease
 – Studies of normal biology
Working Design

- Modular “Block” Detectors
- \(\sim 3.1 \times 3.1 \times 20 \text{ mm} \) L(Y)SO (16 x16)
- PMT (possibly SiPM) readout
- Time of flight and 1-bit DOI
- 40 rings, 48 detectors/ring
- \(\sim 78.6 \text{ cm} \) ring diameter
- 215 cm axial FOV
- OpenPET electronics
Predicted NEC\textsubscript{TOF} Gains versus Siemens Biograph mCT

Adult Total Body Phantom:
- 27 cm
- 200 cm
- **43.9 (10 mCi)**

Pediatric Total Body Phantom:
- 20 cm
- 70 cm
- **20.0 (0.3 mCi)**

Brain: (Voctiss 8, 6:1 brain to body)
- **4.2 (10 mCi)**

Heart: (Voxtiss 8, all in heart)
- **4.7 (20 mCi)**
Lesion Detectability - ALROC

Scan times are total for imaging a 100 cm x 35 cm dia. cylinder.
Spheres are 1.0 cm diameter with 3:1 uptake ratio.
Expected Counting Rates

Adult Total Body Phantom:

- Singles: 164 Mcps
- Prompts: 47 Mcps
- Randoms: 34 Mcps

Singles:Prompts ratio: 3.5

10 mCi in phantom

Optimal ring difference:
284 (~40% axial FOV)
Electronics

- Acquire singles
- Each detector crate writes singles to own disk
 - completely independent and scaleable
- Detector crates all synchronized in time
- Coincidences identified offline
 - complete flexibility in terms of energy window, timing windows etc…

OpenPET Meeting
18:30 Thursday ASEM 201
Why DOI-Encoding may be Necessary
Detector Development

• **Goal:**

 < 400 ps timing resolution with 1-bit DOI

• **Approaches:**
 Phosphor-coating, two-layer, monolithic…

3 x 3 x 20 mm LYSO with YAG phosphor
Image Reconstruction

- 2 meter extended NEMA IQ phantom
- Reconstruction:
 - OSEM (5 iterations/2 subsets)
 - 2 mm voxels, 160 x 160 x 1000 image matrix
 - dual 8-core CPUs @ 2.0 GHz,
 - ~10 mins/iteration per 1 billion events

Reconstructed image corresponding to 4-minute scan, 10 mCi in phantom.
Other Considerations

- **Mechanical design**
 - Scale
 - 491,520 crystals
 - 880 kg of L(Y)SO!
 - Thermal management (~30-40 kW)
 - Highly reliable & easily serviced
 - Efficient fabrication scale-up

- **Attenuation correction**
 - Low-dose CT?
 - Static transmission rods?
 - LSO background?

- **Respiratory Gating**

Current Status

- Project launched to build prototype total-body PET scanner with unprecedented sensitivity
 - Simulations are being used to evaluate design trade-offs
 - Initial design and feasibility studies underway
 - Conceptual applications in clinical medicine and research have been formulated

- Community input and participation encouraged
• Greatly increased utilization of available signal
 – Natural technical progression for the development of PET
 – Scans approaching background radiation dose, or,
 – High statistics scans at current radiation dose

• Assured unique novel human applications

• The need for advances which embrace the skill base of the IEEE imaging community:
 – Appropriate TOF/DOI detector technology
 – Optimal sorting and use of singles information
 – Accurate and fast detector normalization
 – Low dose attenuation correction
 – Efficient and accurate image reconstruction
 – …