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1. Introduction
Background
• Lesion detectability is a critical metric in PET imaging, particularly in 

oncology – impacting diagnostic accuracy and patient outcome
• Growing interest for reduced dose or short-frame/kinetic imaging 
• Deep learning (DL)-based PET image denoisers have been 

proposed to recover image quality from noisy images
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2. Methods

3. Results

4. Conclusion
Summary and Conclusion
• The developed framework allows for reproducible in-vivo lesion quantification 
• The investigated DL-based denoiser enhances lesion detectability for both contrast 

ratios (3:1 and 5:1) and across all noise levels and lesion sizes
Next Steps
• Randomizing lesion size, number and location
• Increased data sizes for consistent and statistically 

significant results
• Use of more advanced metrics like the Channelized 

Hotelling Observer

Objectives 
• Evaluation of the impact of DL-based denoisers on computer-estimated 

lesion detectability using artificially added lesions
• Investigation of the performance at reduced count level
• Comparison to noisy original images under various conditions (lesion 

contrast, lesion size)
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DIANA -  Detectability Investigations using Artificial Nodal Additions [1]
This tool enables the addition of list-mode data from lesions to raw PET data prior to reconstruction
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AMDiff [2]
Anatomically and metabolically 

informed diffusion model

• Unified framework for denoising 

and lesion segmentation
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Study design:
• Lesions placed in the liver of a human subject
• 3 different noise levels with 8 image representations each 
• Lesion to liver background-ratio 3:1 and 5:1
• 3 different lesion diameters: 4mm, 6mm, 8mm

Non-Pre-Whitening Matched Filter
• Observer response variable 𝜆𝑖  for an input image 𝑓𝑖  with 

lesions present (i=1) or absent (i=0)
• 𝜆𝑖 = (< 𝑓1 > − < 𝑓0 >) ∙ 𝑓𝑖

• < 𝑓𝑖 > is the average image of its class

SNR
• Measures how reliable a signal can be distinguished from the 

absence of a signal

• SNR =
(<𝜆1> − <𝜆0>)2

0.5∙Var 𝜆1 +0.5∙Var(𝜆0)

Area under the Receiver Operating Characteristic Curve 
(AROCC)
• Related to SNR:

 AROCC =
1

2
+

2

2
∙ erf 0.5 ∙ SNR

• Returns a value between 0.5 (no detectability) and 1.0 
(maximum detectability) 

Image Examples 

→ Improved lesion conspicuity on denoised images
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→ AROCC is consistently higher than on original noisy images throughout 
all lesion sizes and noise levels

→ Caveat: high statistical noise: inconsistent AROCC (see circles in right figure)
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