UCDAVIS HEALTH

Cloud-Based Serverless Computing Enables Accelerated Monte Carlo-Based Scatter Correction for PET

Estimated amount of

scatter

Simulation part: SimSET · -

Speed up by

more than

one order of

magnitude

 10^{10}

 10^{9}

 10^{8}

<u>R. Bayerlein¹</u>, Vivek Swarnakar², B. A. Spencer^{1,3}, A. Selfridge¹, E.K. Leung⁴, L. Nardo¹, S. R. Cherry^{3,1}, R. D. Badawi^{1,3}

¹Department of Radiology, UC Davis Health; ²Imaging Consultant, UC Davis; ³Department of Biomedical Engineering, UC Davis; ⁴UIH America, Inc., Houston, TX

Introduction and Background

- Importance of scatter correction (SC) Essential component of PET image reconstruction to obtain quantitatively accurate images with high contrast
- **Total-body and long axial field-of-view PET**
 - SC becomes more complex
 - Huge data sizes
 - > More oblique lines of response with higher probability for multiple scatters
 - > Variable coincidence time windows

Scatter Correction for Total-Body PET

- Monte Carlo-based scatter correction
 - Utilizing the SimSET toolkit
 - SC performed between individual
 - image reconstruction iterations
 - Using 2.5 billion simulated decays
- Sinogram scaling
 - Detector block-based sinograms
 - Scaling of (trues + scatters) to (prompts – randoms) Calculation of SC terms for each list-mode event

True & scattered events

Scaling process

Results

instrastructure

→ AWS lambda

local server

 10^{5}

 10^{6}

(uiu)

computation 10¹

Total

 10^{4}

- Implementation: Monte Carlo-based approach
 - > Inherently includes multiple scatter
 - Separation of trues and scatters
 - Challenge: <u>high computational expense</u>
- **Overcoming computational burdens** Highly parallelized cloud-based computation
- Computational burden
 - ~1 hour (!) per iteration on local servers

- **Amazon Web Services (AWS) Lambda**
 - Powerful serverless computing tool for distributed computation
 - Parallel execution of short-lived programs without managing large physical servers

- SimSET on AWS
 - Containerized application image with SimSET installed
 - Independent simulations on up to 1000 Lambda instances
 - Subsequent concatenation of all output files
 - \succ File sizes: e.g., 100 million simulated coincidences result in ~1 GB of data.

- Run time measurements
- Performance: AWS $\leftarrow \rightarrow$ local servers

Number of simulated decays

 10^{7}

SimSET

Demonstration of Scatter Correction

- Manuscript under revision
- 20-min phantom study on uEXPLORER total-body PET/CT scanner \geq 3 NEMA Image Quality phantoms + homogenous cylinder phantom > 4 iterations (OSEM), 13 subsets, 2.85 mm voxel size

- > Up to $2 \cdot 10^{10}$ total decays > Comparison to local servers (44 CPU threads on Intel® Xeon[®] Gold 6126 CPUs at 2.6 GHz)
- \succ Above 10⁸ decays, AWS Lambda outperforms local computation
- \succ Above 5 \cdot 10⁹ decays: sequential repetition needed due to 15-min maximum execution time constraint

Visual inspection

- Scatter removed from cold lung insert and plastic parts
- Residual in spheres' stems visible

• Line profiles

- Average bias on the background activity concentration
 - ➢ With SC: -0.12 %
 - ➢ Without SC: +7.97 %
- Mean residual lung error
- \succ On average 0.73% lower than

Underlying In-House Image Reconstruction Framework

A vendor-independent open-source framework using C++ and MATLAB to facilitate complex research projects

1) Data selection, listmode decoding and pre-calculation of correction factors

2) Setting length of single or multiple frames

4) Selection of reconstruction parameters and voxel size

> 5) Performance of Kernelbased image reconstruction (new feature)

6) Simulation of conventional scanners from total-body PET data

3) Sensitivity Image **Generation Process**

7) Scatter correction (SC) with optional use of serverless cloud computing on AWS

Limitations and Discussion

Dependency on internet connection speed Up to 10 GB of files to be downloaded depending on the number of simulated decays

Cost \bullet

Simulation of $2.5 \cdot 10^9$ decays costs about \$10 \rightarrow could be a solid alternative to on-site computing servers considering procurement overhead and maintenance costs

Limitation for dynamic imaging

Large number of individual scatter corrections required \rightarrow time-advantage of cloud-based computation might vanish

This study received funding through NIH grant R01 CA206187 and R01 CA24942 and from a research grant from United Imaging Healthcare

