Total-Body Positron Emission Tomography From Concept to Reality: A 15-Year Journey

Simon R. Cherry, Ph.D. Ramsey D. Badawi, Ph.D. Lorenzo Nardo, M.D., Ph.D.

RSNA/AAPM Symposium: Together We Can Make a Difference

Disclosures

UC Davis has a revenue sharing agreement and a research agreement with United Imaging Healthcare

ImaginAb Inc. provided material support for one of the studies

About us

Content

- The history of the EXPLORER total-body PET project
 - Ramsey D. Badawi, Ph.D.
- Clinical implementation of total-body PET
 - Lorenzo Nardo, M.D., Ph.D.
- Total-body PET in research
 - Simon R. Cherry, Ph.D.

Along the way we...

- Have traveled across the world
- Found support (and resistance!) from unanticipated quarters
- Have been caught up in trade wars
- Made new friends and tried not to lose old ones
- Experienced disappointment, frustration, surprise and elation
- Learned a lot about ourselves and stayed good friends

We are VERY grateful for the MANY people who did so much to help us

This is our story...

2005: The journey begins...

Timeline

(Not) Getting Funding

Fig. 1: Design drawings of EXPLORER: a) Opening of one half-ring segment for easy access to detectors; b) Horizontal orientation; c) Vertical orientation; d) Clam-shell opening for insertion of samples.

EXPLORER Consortium founder members:

Joel Karp

Dave

Mankoff

Tom Budinger

Richard Wahl

Terry Jones

Mike Graham

Bill Moses

Bill Jagust

Jinyi Qi

Industry Advisory Panel: Michael Casey (Siemens) Matthias Schmand (Siemens) Chi-Hua Tung (Philips) Chuck Stearns (GE)

(Not) Getting Funding

hand NULL Dada 2000, MIT Daugwi ~ 0 NIII D 1107 2000, MIII – Dauawi Feb 2009: Keck Badawi Feb 2011: NSF MRI Cherry 5. Nov 2011: NIH– Badawi 6. Apr 2012: UC Davis RISE – Cherry 7. Sep 2013: Siemens – Cherry Raymond 8. Jun 2014: NIH Cherry, Badawi Dougherty Jul 2014 Kack Charry Juizongeneen cherry 10 Oct 2014. MDC Japace LIK concortium 1010 Ct 2017, Mille Jones, on consolition 11. Oct 2014: NIH – Badawi, Cherry (awarded Sep 2015)

The Expendables

Success!

First contact with United Imaging

2015 IEEE Nuclear Science Symposium & Medical Imaging Conference

22nd International Symposium on Room-Temperature Semiconductor X-Ray and Gamma-ray Detectors

Hongdi Li

January 2016: UIH Factory Visit

The Mockup

Clinical Expertise

Lorenzo Nardo, MD, PhD Diagnostic Radiology, MRI physics, Nuclear Medicine, Musculoskeletal Imaging, Oncologic Imaging, ...

)23

2024

Back to Shanghai

EXPLORER: facts and figures

EXPLORER

CMS EM Calorimeter

of crystals: 564,480
of photodetectors: 53,760
of electronic channels: 53,760
Mass: ~11,000 kg

of crystals: 75,848# of photodetectors: 137,048# of electronic channels: 75,848Mass: ~100,000 kg

EXPLORER: test objects

EXPLORER: test objects

First human study

First human study

Conventional PET (uMI 780) 8 beds, 2 mins/bed, 50 min p.i.

FDA 510(k) clearance

Installation at UC Davis

First research scan

First patient study

EXPLORER concept goes world-wide

Installations: Nov 2023

Ecosystem of Scanners

	UIH	UIH	PennPET	GE OMNI	Siemens
	uEXPLORER	Panorama GS	EXPLORER	Legend LAFOV	Quadra
Axial FOV	194 cm	148 cm	140 cm*	Up to 128 cm **	106 cm

* Not FDA 510(k) cleared ** 128 cm version not FDA 510(k) cleared

Long Axial FOV PET/CT

Improved signal collection efficiency^{1,2} and spatial resolution^{1,2} allow for:

- Improved image quality
- Delayed imaging
- Decreased acquisition time
- Decreased injected dose
- Simultaneous total body scan

Image from "Mingels et al. Total-body PET/CT or LAFOV PET/CT? Axial field-of-view clinical classification. Accepted. EJNMMI 11.22.2023"

Protocol Variables

Image Wisely

0.4 mCi

2 mCi

Abhijit Chaudhari

Increasing Uptake Time

Decreasing Scan Length

20 min

5 min

75 S

18.75 s

Protocol Variables

Protocol Examples

Location	Injected Activity	Uptake Time (min)	Acquisition Time (min)	Reconstruction Parameters
Davis	~300 MBq	120±10	20	256x256 matrix; 2.3mm voxels 4 iterations & 20 subsets PSF off and on
Zhongshan	3.7 MBq/kg	65±10	5	192x192 matrix; 3.1mm voxels 3 iterations & 20 subsets PSF off and on
Bern	3.0 MBq/kg	60±10	6	440x440 matrix; 1.65mm voxels 4 iterations & 5 subsets Gaussian filter: 2mm FWHM

Axel Rominger

Hongcheng Shi

40 min

90 min

3 hrs

Anna Calabro'

Small Anatomic Structures

Elizabeth Triumbari

Ng et al. Semin Nucl Med. 2022 May; 52(3): 330–339

Lesion Detection

CT

Fatma Sen

Clemens Mingels

Lesion Detection

120 minutes

Mehrad Rokni

New Protocol Challenges

Hande Nalbant

Challenges and Opportunities

Challenges

Clinical:

- Sensitivity/false positives
- New experiences vs old Classifications
- New artifacts/QC

Opportunities

- Improving image quality
- Delayed and dynamic imaging
- Decreasing acquisition time
- Decreasing injected dose

Logistics:

- Being the first US center
- PACS too slow to scroll large datasets
- Storage space

Research with Total-Body PET

Research with Total-Body PET

Yiran Wang, UC Davis

Total-Body Dynamic Imaging

Measuring pharmacokinetics in every tissue and organ of the body

~1,000,0000 measured timeactivity curves

Total-Body PET/CT: A New Tool for Systems Medicine?

The international journal of science/9 November 2023

nature

COLUME IS SNEP / SPI

Changes in the make-up of microorganisms in the gut have been linked to disorders such as Parkinson's disease

Brain and body are more intertwined than we knew

A host of disorders once thought to be nothing to do with the brain are, in fact, tightly coupled to nervous-system activity.

I he list goes on. Evidence is mounting that cancers use nerves to grow and spread. In this week's *Nature*, Michelle Monie and her colleagues² show how some brain cancers

The effect is two-way. There is a lengthening list of symptoms not typically viewed as disorders of the nerv-

ous system in which the brain and the neural processes

nature communications

Article

https://doi.org/10.1038/s41467-022-35321-2

0

Multi-organ imaging demonstrates the heart-brain-liver axis in UK Biobank participants

Received: 13 December 2021

Accepted: 28 November 2022

Celeste McCracken ^{® 1,11}, Zahra Raisi-Estabragh ^{® 2,3,11} [⊠], Michele Veldsman ^{® 4,5}, Betty Raman¹, Andrea Dennis⁶, Masud Husain ^{® 4,5,7}, Thomas E. Nichols ^{® 4,8,12}, Steffen E. Petersen ^{® 2,3,9,10,12} & Stefan Neubaue^{1,12}

Published online: 21 December 2022

Check for updates

Medical imaging provides numerous insights into the subclinical changes that precede serious diseases such as heart disease and dementia. However, most imaging research either describes a single organ system or draws on clinical cohorts with small sample sizes. In this study, we use state-of-the-art multiorgan magnetic resonance imaging phenotypes to investigate cross-sectional relationships across the heart-brain-liver axis in 30,444 UK Biobank participants. Despite controlling for an extensive range of demographic and clinical covariates, we find significant associations between imaging-derived phenotypes of the heart (left ventricular structure, function and aortic distensibility), brain (brain volumes, white matter hyperintensities and white matter microstructure), and liver (liver fat, liver iron and fibroinflammation). Simultaneous three-organ modelling identifies differentially important pathways across the heart-brain-liver axis with evidence of both direct and indirect associations. This study describes a potentially cumulative burden of multiple-organ dysfunction and provides essential insight into multi-organ disease prevention.

Total-Body PET/CT: A New Tool for Systems Medicine?

Omics-technologies

- deep phenotyping/genotyping
- large cohorts
- constrained spatial sampling (blood, urine, CSF, biopsy)

Total-body PET/CT imaging:

- >10⁶ spatial measurements per scan
- function and anatomy
- small cohorts
- small parameter space

L. Hood and M. Floreshthese /Biothechystology (2012) 6.10024

Kinetic Modeling

Guobao Wang, UC Davis

Total-Body Parametric Imaging with ¹⁸F-FDG

 $K_1 k_2 / (k_2 + k_3)$

Wang et al, J Nucl Med 63; 1274-81 (2022)

Parametric FDG Imaging in COVID-19 Recovery

- 8 subjects recovering from COVID-1
 13 control subjects
- 60 minute total-body dynamic imaging on uEXPLORER

15 × 10⁻⁴

Wang et al, J Nucl Med 64; 1824-30 (2023)

SUV

Lung ¹⁸F-FDG net influx rate K_i

(g/ml)

(/min)

Lung K_i

Healthy

Radiolabeled Agents for PET Imaging

 Small molecules ~1 nm • Substrates for enzymes, receptor ligands, drugs... • Peptides • Receptor targeted, enzyme substrates... ~1-5 nr • Antibodies • Full length, minibodies, diabodies ~10 x 2 nm • Particles • Liposomes, lipospheres, nanoparticles... 20-100 nm • Cells -• T-cells, stem cells... ~5-100 µm

Total-Body Perfusion Imaging

Li et al, J Nucl Med 64; 1831-8 (2023)

Stress Rest 0.65 0 Stress Rest 2.0 0 Stress Rest 0.1

Targeted imaging of CD8+ T cells during COVID-19 recovery

Crefmirlimab is a minibody with high affinity to **human CD8**

0.5 mCi (18 MBq) of ⁸⁹Zr-Df-Crefmirlimab-Berdoxam

Omidvari et al, Science Advances 9, eadh7968(2023)

New models needed!

Time (h)

Systems Medicine with Total-Body PET/CT

Total-Body PET

PET radiotracers

Dynamic imaging

Tracer kinetic modeling

Thomas Beyer and Lalith Kumar Shiyam Sundar Medical University of Vienna

A powerful new quantitative tool

Acknowledgements

EXPLORER Molecular Imaging Center

Benjamin Spencer Yiran Wang

Jinyi Qi Eric Berg Phu Huynh Lynda Painting Kevin Chung

Terry Jones Elizabeth Li Abhijit Chaudhari Fatma Sen Xuezhu Zhang Ofilio Vigil Aaron Selfridge Jonathan Poon

Guobao Wang Negar Omidvari Reimund Beyerlein Yasser Abdelhafez Dana Little and many more...

EXPLORER consortium Joel Karp (U Penn) William Moses (retired)

Min Xue Weiping Liu Chao Wang Yang Lv Yu Ding Ping Zhou Songsong Tang James Xia

Jun Bao Tianyi Xu Yun Dong Xinyu Lv Debin Hu Edwin Leung

Hongdi Li Al Zhang Yong Zhao Shaohui An Shaoping Chu Tao Feng and many others...

Funding: R35 CA197608, R01 CA206187

Concluding Remarks

- Total-body PET/CT is now a reality
 - ~40 scanners with an axial coverage of > 1 meter installed worldwide
- Total-body PET/CT has impacted clinical care by demonstrating a step change in image quality
 - >250,000 patients have benefited from total-body PET scans since its introduction in 2019
- Total-body PET/CT can quantitatively measure physiology, metabolism and molecular targets across the entire human body
 - A new research tool for systems medicine

It has been a pleasure and privilege to share our story with you

Thank you

