

Feasibility Study of Micro-Dose Total-Body Dynamic PET Imaging Using the EXPLORER

Xuezhu Zhang, Jian Zhou, Guobao Wang, Jonathan K. Poon, Simon R. Cherry, Ramsey D. Badawi and <u>Jinyi Qi</u>

University of California, Davis

June 9, 2014

Funded by NIH R01 CA170874 & a UC Davis RISE award

EXPLORER: <u>Ex</u>treme-<u>P</u>erformance <u>Lo</u>ng-Axial <u>R</u>esearch Scann<u>er</u>

	Current PET Scanners	EXPLORER
Axial Length	~ 22 cm	200 cm
Dose Level	200 ~ 500 MBq	10 ~ 500 MBq
Whole-body Dynamic Imaging for Kinetic Studies	Multi-bed and multi- pass w/ large temporal gap	Simultaneous total- body imaging w/ high temporal resolution
Sensitivity for Human Imaging (cps/MBq)	1,400	43,000

Objectives

- Perform computer simulation studies to investigate the feasibility of micro-dose total-body dynamic PET imaging
 - At a dose level close to a round-trip inter-continental (e.g., Los Angeles-London) flight (0.1~0.2 mSv)
 - Typical natural background radiation in US is 3.1 mSv per year
- Enabling technologies:

<u>Ultra-sensitive EXPLORER + New kernel-based reconstruction</u>

 Impact: expanding PET applications to pediatric and adolescent populations, studying and monitoring chronic disease, and much more!

System Parameters of the EXPLORER

Scintillator	LSO
Crystal pitch size (mm ³)	$3.42 \times 3.42 \times 20$ (3.34 mm crystal and $80 \ \mu \text{m}$ reflector)
Number of crystals per block detector	15 x 15
Number of block detectors per ring	48
Number of block rings	36
Ring diameter	800 mm
Transaxial FOV	700 mm
Gap size between adjacent block rings	3.42 mm (one crystal pitch)
Gap size between adjacent block rings Total crystal rings (+ virtual gap rings)	3.42 mm (one crystal pitch) 540 (575)
Gap size between adjacent block rings Total crystal rings (+ virtual gap rings) Axial FOV	3.42 mm (one crystal pitch) 540 (575) 1,966 mm
Gap size between adjacent block rings Total crystal rings (+ virtual gap rings) Axial FOV Energy resolution	3.42 mm (one crystal pitch) 540 (575) 1,966 mm 13%
Gap size between adjacent block rings Total crystal rings (+ virtual gap rings) Axial FOV Energy resolution Energy window	3.42 mm (one crystal pitch) 540 (575) 1,966 mm 13% 440 – 665 keV

¹⁸F-FDG Total-body PET Imaging Simulation

- SimSET Monte-Carlo Toolkit
- XCAT 2.0 male phantom (Courtesy of Dr. Segars from Duke University)
- 390×390×1,054 with 1.71mm voxels (height 179 cm)
- 18 major organs and tissues with realistic TACs
- Injected activity: 0.27 mCi (10 MBq), about 1/40 of standard injection activity
- Acquired 22 frames over 60 minutes: 10×30 sec, 5×60 sec, 4×300 sec, and 3×600 sec
- Total number of events = 2.21B (70.4% trues and 29.6% scatters)

Activity index

μ map (511keV)

Simulated Time Activity Curves

[1] Dagan Feng, et al. IEEE Transactions on Information Technology in Biomedicine, 1(4):243-254, 1997.

[2] Nicolas A Karakatsanis, et al. Physics in Medicine and Biology, 58(20):7391-7418.

[3] Sophia Koukouraki, et al. Journal of Nuclear Medicine and Molecular Imaging, 33(10):1115-1122, 2006.

[4] Huiting Qiao and Jing Bai. IEEE International Conference on Complex Medical Engineering (CME), pages 154-158, 2011.

[5] Shinichi Okazumi, et al. Journal of Nuclear Medicine, 33(3):333-339, 1992.

[6] Yoshihiro Nishiyama, et al. European Journal of Nuclear Medicine and Molecular Imaging, 34(1):78-86, 2007.

¹⁸F-FDG Total-body PET Imaging Simulation

- SimSET Monte-Carlo Toolkit
- XCAT 2.0 male phantom (Courtesy of Dr. Segars from Duke University)
- 390×390×1,054 with 1.71mm voxels (height 179 cm)
- 18 major organs and tissues with realistic TACs
- Injected activity: 0.27 mCi (10 MBq), about 1/40 of standard injection activity
- Acquired 22 frames over 60 minutes: 10×30 sec, 5×60 sec, 4×300 sec, and 3×600 sec
- Total number of events = 2.21B (70.4% trues and 29.6% scatters)

Activity index

μ map (511keV)

Static Images

Image Reconstruction Methods

- Conventional listmode OSEM
 - 195×195×527 image array of 3.42 mm voxel
 - 10 subsets and 10 iterations
 - w/ and w/o Gaussian post-smoothing
- Kernel-based listmode OSEM
 - 195×195×527 image array of 3.42 mm voxel
 - 10 subsets and 10 iterations
- Scatter mean estimated from a separate Monte Carlo simulation and smoothed by spatial averaging

Introducing Kernel Representation

Intensity in voxel *j*: $x_j = \Gamma(u_j, v_j, w_j)$ Spatial Location

Adding Functional Attributes

 $x_{j} = \Gamma(z_{j}), \quad z_{j} = [u_{j}, v_{j}, w_{j}, f_{j}^{1}, f_{j}^{2}, f_{j}^{3}, ...]^{T}$ Spatial Location Functional attributes

Reconstructed Composite Images (Functional Attributes for Kernel Method)

0~600 sec

Image Representation using Kernels

- Linear assumption in high-D feature space $\{\phi(z_j)\}$ $\Gamma(z) = c^T \phi(z), \ c = \sum_{j=1}^N a_j \phi(z_j)$
- Kernel-based image representation

$$\Gamma(z) = \sum_{j=1}^N a_j \kappa(z_j, z), \quad \kappa(z_j, z) = <\phi(z_j), \phi(z) >$$

Kernel example: Gaussian kernel

$$\kappa(\boldsymbol{z}_{j},\boldsymbol{z}_{k}) = \exp(-\left\|\boldsymbol{z}_{j}-\boldsymbol{z}_{k}\right\|^{2}/2\sigma^{2})$$

Image Reconstruction in Kernel Space

Special case: K = I, a = x (conventional method)

Reconstructed Images

OSEM w/ Gaussian postsmoothing

Kernel method

Reconstructed Time-Activity Curves

 TACs from the kernel method is less noisy at earlier frames (shorter duration)

Comparison of Estimated Ki Values

Dashed lines indicate the true Ki values

Voxel-wise Bias vs. Standard Deviation

- We also simulated single-organ dynamic imaging using current 4-block ring scanner (22-cm AFOV) ("4R")
- The best performance (lowest bias and std) is achieved by combining the EXPLORER with kernel reconstruction ("EX+K")

Conclusions

- Combining the EXPLORER with the new kernel-based image reconstruction we obtained high-quality PET images and time activity curves using only ~1/40 of standard injected activity
- The simulation study show that micro-dose total-body dynamic PET imaging is feasible with the EXPLORER
- The development of the EXPLORER and new image reconstruction method can open up vast new opportunities for PET applications

Acknowledgements

- Dr. Paul Segars at Duke University for providing the XCAT 2.0 phantom
- Drs. Nicolas Karakatsanis and Arman Rahmim at JHU for sharing patient data (verification of simulated TACs)
- This work was carried out under the EXPLORER consortium (UC Davis, LBNL, Univ. of Pennsylvania)
- Funded by NIH R01 CA170874 and a UC Davis RISE award

